Contros HydroC CO₂/FT calibration using in-situ pCO₂ (DIC/TA) data from FB2014 (ROS-PLY) crossings # The Contros HydroC CO₂/FT deployment in 2014 - Sensor deployed from the 18/03/2014 to the 9/10/2014 on the Armorique FerryBox. - 333 crossings with pCO₂ data acquisition. - 2200 hours of data acquisition every minutes. - Sensor calibrated by the Contros technical team in February 2014 (2000 €) # The Contros HydroC CO₂/FT deployment in 2014 - 8 monthly crossings between Roscoff and Plymouth. - 18 DIC and TA samples during each crossings. - pCO₂ calculated from DIC and TA measurements. - The error associated to pCO_2 calculation from DIC and TA is around 5,8 μ atm (Zeebe and Wolf-Gladrow, 2001). #### Zero - During zero intervals, a zero CO_2 gas is created (through a soda lime cartridge) and the sensor provides the current zero reading used later for drift correction. - On our FerryBox: 1 zero every 6h, during 2 min. - Followed by flush intervals (during 2 min); used to flag data acquired during the signal recovery from the zero value to the ambient pCO₂ reading. - But the signal recovery last at least 10-15 minutes. #### Zero - Recommendations: - We now have the possibility to perform the zeroing when the ferry arrive in a harbour and when the FerryBox stop. Avoid loosing pCO₂ data during crossings. - A longer zero intervals (5 min). #### Zero #### Remarks: • When the ferry leaves the harbour and when the FerryBox starts, the signal recovery from the pCO_2 values during the washing cycle of the FB (acid cleaning and then high pCO_2 values (> 2000 μ atm)) to the ambient pCO_2 readings is long (\approx 20 min). # Comparison between pCO₂ FB & pCO₂ DIC/TA - 18 DIC/TA sampling for each crossing - But only 16 comparison between pCO₂ FB and pCO₂ DIC/TA due the signal recovery after the washing cycle in the harbour. - Generally 1 pCO₂ DIC/TA wrong per crossing due to bad sampling or technical issue during the analysis. # Comparison between pCO₂ FB & pCO₂ DIC/TA - An important temporal drift between the rough pCO2 FB data and pCO2 DIC/TA. - $\approx 100 \, \mu atm in \, 8 \, months$ - Not linear ## Comparison between pCO₂ FB, pCO₂ DIC/TA & zero - Some similarities between the zero and the pCO₂ FB pCO₂ DIC/TA temporal drifts. - But the pCO₂ FB pCO₂ DIC/TA and the zero signals don't follow exactelly the same trend. ## First corrections on the pCO₂ FB signal - In a first time, correction of the pCO₂ FB signal by the zero signal on all the high-frequency data. - In the FB the temperature (tmpSBE45) is ≈ 0.5 °C warmer than the real SST. - pCO₂ DIC/TA calculated at the real SST (tmpSBE38). - And correction of the pCO₂ signal at the in-situ SST (tmpSBE38 tmpSBE45). - \rightarrow pCO_{2.SBE38} = pCO_{2.SBE45} x exp (0,0423 x (tmpSBE38 tmpSBE45)) ### Comparison between pCO₂ FB corr. & pCO₂ DIC/TA pCO₂ FB corrected from the zero signal and with the temperature difference. - Second correction on high-frequency pCO₂ FB data: - To take into account the difference between pCO₂ FB corr. nd pCO₂ DIC/TA with linear interpolation between each crossing. #### Results of the in-situ calibration - The difference between pCO2 FB and pCO2 DIC/TA is considered and all the residuals are homogeneously distributed around 0. - The error associated to pCO_2 calculation from DIC and TA is around 5,8 μ atm (Zeebe and Wolf-Gladrow, 2001). - StdDev on these residuals of 5,5 μatm. - Coherent results, application of the in-situ calibration on all the HF-FB pCO₂ data. #### 2014 Deployment - Blanks = missing crossings due to technical issues on the FB. - To obtain this quality, you must "clean" the dataset. #### Post-processing - "Cleaning" of the pCO₂ dataset (few days of post-processing, manually): - Remove all the zero and flush values - Remove the data when the pCO₂ signal break up - Remove the pCO₂ data at the start of the FB (first 20 min)